Electronic excitations from a linear-response range-separated hybrid scheme
نویسندگان
چکیده
We study linear-response time-dependent density-functional theory (DFT) based on the singledeterminant range-separated hybrid (RSH) scheme, i.e. combining a long-range Hartree-Fock exchange kernel with a short-range DFT exchange-correlation kernel, for calculating electronic excitation energies of molecular systems. It is an alternative to the more common long-range correction (LC) scheme which combines a long-range Hartree-Fock exchange kernel with a short-range DFT exchange kernel and a standard full-range DFT correlation kernel. We discuss the local-density approximation (LDA) to the short-range exchange and correlation kernels, and assess the performance of the linear-response RSH scheme for singlet → singlet and singlet → triplet valence and Rydberg excitations in the N2, CO, H2CO, C2H4, and C6H6 molecules, and for the first charge-transfer excitation in the C2H4-C2F4 dimer. For these systems, the presence of long-range LDA correlation in the ground-state calculation and in the linear-response kernel has only a small impact on the excitation energies and oscillator strengths, so that the RSH method gives results very similar to the ones given by the LC scheme. Like in the LC scheme, the introduction of long-range HF exchange in the present method corrects the underestimation of charge-transfer and high-lying Rydberg excitation energies obtained with standard (semi)local density-functional approximations, but also leads to underestimated excitation energies to low-lying spin-triplet valence states. This latter problem is largely cured by the Tamm-Dancoff approximation which leads to a relatively uniform accuracy for all excitation energies. This work thus suggests that the present linear-response RSH scheme is a reasonable starting approximation for describing electronic excitation energies, even before adding an explicit treatment of long-range correlation.
منابع مشابه
Assessment of asymptotically corrected model potentials for charge-transfer-like excitations in oligoacenes.
We examine the performance of the asymptotically corrected model potential scheme on the two lowest singlet excitation energies of acenes with different numbers of linearly fused benzene rings (up to 5), employing both the real-time time-dependent density functional theory and the frequency-domain formulation of linear-response time-dependent density functional theory. The results are compared ...
متن کاملDigitally Excited Reconfigurable Linear Antenna Array Using Swarm Optimization Algorithms
This paper describes the synthesis of digitally excited pencil/flat top dual beams simultaneously in a linear antenna array constructed of isotropic elements. The objective is to generate a pencil/flat top beam pair using the excitations generated by the evolutionary algorithms. Both the beams share common variable discrete amplitude excitations and differ in variable discrete phase excitations...
متن کاملRole of Geometric Distortion and Polarization in Localizing Electronic Excitations in Conjugated Polymers.
Five different Density Functional Theory (DFT) models (ranging from pure GGA to long-range-corrected hybrid functionals) were used to study computationally the nature of the self-trapped electronic states in oligophenylene vinylenes. The electronic excitations in question include the lowest singlet (S1) and triplet (T1(†)) excitons (calculated using Time Dependent DFT (TD-DFT) method), positive...
متن کاملPerformance of recent and high-performance approximate density functionals for time-dependent density functional theory calculations of valence and Rydberg electronic transition energies.
We report a test of 30 density functionals, including several recent ones, for their predictions of 69 singlet-to-singlet excitation energies of 11 molecules. The reference values are experimental results collected by Caricato et al. for 30 valence excitations and 39 Rydberg excitations. All calculations employ time-dependent density functional theory in the adiabatic, linear-response approxima...
متن کاملAn improved hybrid image watermarking scheme in shearlet and wavelet domain
Watermarking is one of the best solutions for copyright protection and authentication of multimedia contents. In this paper a hybrid scheme is proposed using wavelet and shearlet transforms with singular value decomposition. For better security, Arnold map is used for encryption. Examining the results and comparing with other methods show that this hybrid proposed scheme with simultaneous utili...
متن کامل